MULTIPLE SOLUTIONS OF A p(x)-LAPLACIAN EQUATION INVOLVING CRITICAL NONLINEARITIES

نویسندگان

  • Yuan Liang
  • Xianbin Wu
  • Qihu Zhang
  • Chunshan Zhao
چکیده

In this paper, we consider the existence of multiple solutions for the following p(x)-Laplacian equations with critical Sobolev growth conditions { −div(|∇u|p(x)−2 ∇u) + |u|p(x)−2 u = f(x, u) in Ω, u = 0 on ∂Ω. We show the existence of infinitely many pairs of solutions by applying the Fountain Theorem and the Dual Fountain Theorem respectively. We also present a variant of the concentration-compactness principle, which is of independent interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Existence of a positive solution for a p-Laplacian equation with‎ ‎singular nonlinearities

‎In this paper‎, ‎we study a class of boundary value problem‎ ‎involving the p-Laplacian oprator and singular nonlinearities‎. ‎We‎ ‎analyze the existence a critical parameter $lambda^{ast}$ such‎ ‎that the problem has least one solution for‎ ‎$lambdain(0,lambda^{ast})$ and no solution for‎ ‎$lambda>lambda^{ast}.$ We find lower bounds of critical‎ ‎parameter $lambda^{ast}$‎. ‎We use the method ...

متن کامل

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

MULTIPLE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS INVOLVING CONCAVE-CONVEX NONLINEARITIES

Since A. Ambrosetti and P.H. Rabinowitz proposed the mountain pass theorem in 1973 (see [1]), critical point theory has become one of the main tools for finding solutions to elliptic problems of variational type. Especially, elliptic problem (1.2) has been intensively studied for many years. One of the very important hypotheses usually imposed on the nonlinearities is the following Ambrosetti-R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013